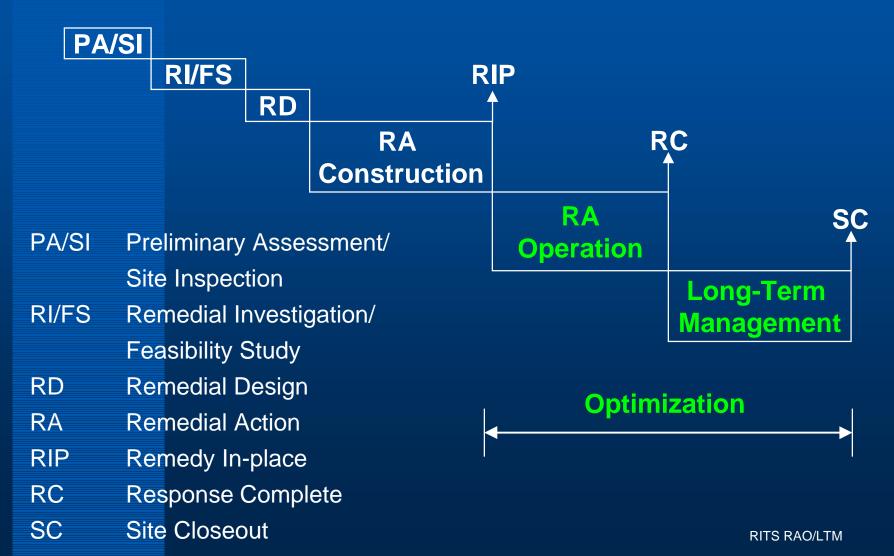


Optimization of Groundwater Monitoring and Remedial Action Operation

Doug Zillmer
Tanwir Chaudhry (Intergraph)
Naval Facilities Engineering Service Center


Overview

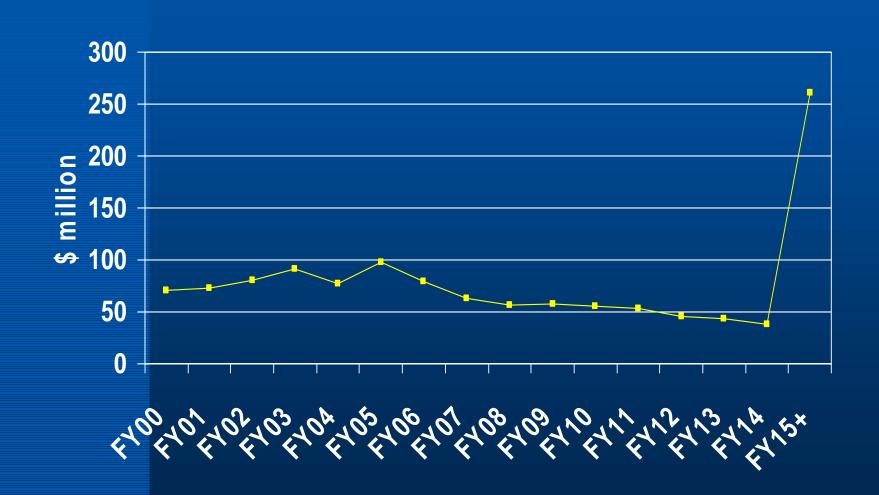
- Background
- Monitoring Optimization
 - Strategy
 - Case Studies
- RAO Optimization
 - Strategy
 - Case Studies
- Summary

Why are Groundwater Monitoring and RAO Important?

- Installation Restoration (IR)
 Program Goal:
 - "To achieve environmentally protective site closeouts at least cost."
- Site closeout is achieved through a series of phases or steps.
- Groundwater monitoring and RAO are key to the site closeout process.

IR Program Phases

Groundwater Monitoring


- Validate the conclusions of RI/FS
- Determine if contamination is migrating
- Determine if contamination will reach receptor
- Assess remedial system performance
- Satisfy regulatory requirements
- Assess the practicability of achieving cleanup
- Confirm Response Complete
- Perform five-year reviews

Remedial Action Operations

- Operate and maintain active remediation system
- Monitor progress of natural attenuation
- Monitor, evaluate, and optimize system(s):
 - Extraction system
 - Treatment system
 - Monitoring network/system
- Perform five-year reviews

RAO+LTM Budget Estimate

(NORM data September 1998)

RAO+LTM as Percent of DON IR Budget

(NORM data September 1998)

DON RAO/LTM Optimization Working Group

- DON Working Group formed in 1998 to develop guidance for optimizing monitoring and RAO
- "Optimization"
 - Process to achieve optimal cost while maintaining or enhancing data quality and protectiveness.
- Approach
 - Conduct case studies
 - "In-house" "Contractor"
 - Develop guidance from lessons learned
- Members from NAVFAC, CNO, EFDs/EFAs, and NFESC

DON RAO/LTM Optimization Working Group

Mark Barnes LANTDIV

Tanwir Chaudhry Intergraph / NFESC

Geoff Cullison CNO

Debbie Felton NORTHDIV

Mike Maughon SOUTHDIV

Ryan Mayer EFA Ches

Frank Peters NAVFAC

Michael Pound SWDIV

Ken Spielman EFA West

Doug Zillmer NFESC

Status: Case Studies and Guidance Documents

- Completed case studies for monitoring optimization
 - In-house: four sites
 - Contractor: six sites (three activities)
- Interim Final Monitoring Guidance January 2000
- RAO case studies
 - In-house: three sites
 - Contractor: seven sites (four activities)
 - Site reports under review/revision
- Draft RAO Optimization Guidance September 2000

Overview

- Background
- Monitoring Optimization
 - Strategy
 - Case Studies
- RAO Optimization
 - Strategy
 - Case Studies
- Summary

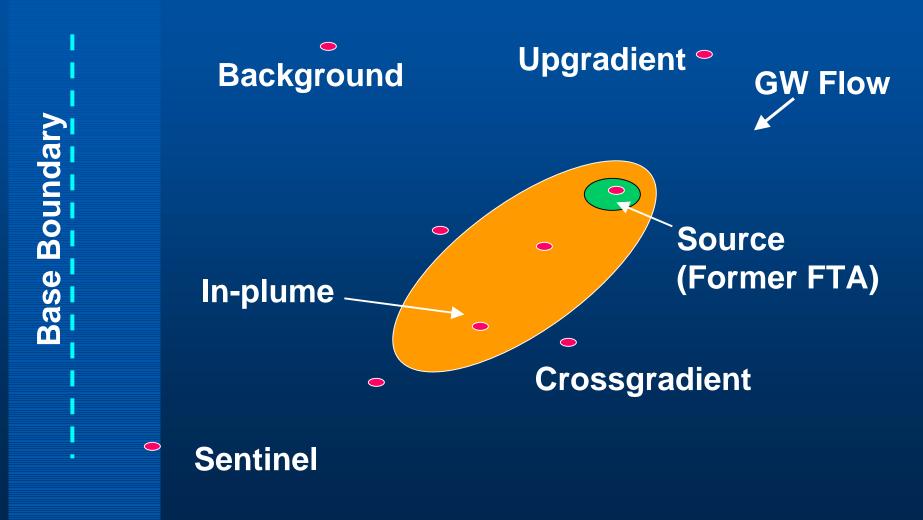
Monitoring Optimization

- Systematic and iterative process
- Groundwater (GW) Monitoring Plan
 - Monitoring goals
 - Exit strategy, decision criteria
 - Monitoring network, monitoring frequency, field procedures, analytical methods, quality assurance/quality control (QA/QC) procedures, data handling, and reporting procedures
- Site-specific or Basewide monitoring

Monitoring Optimization Strategy

Six Elements

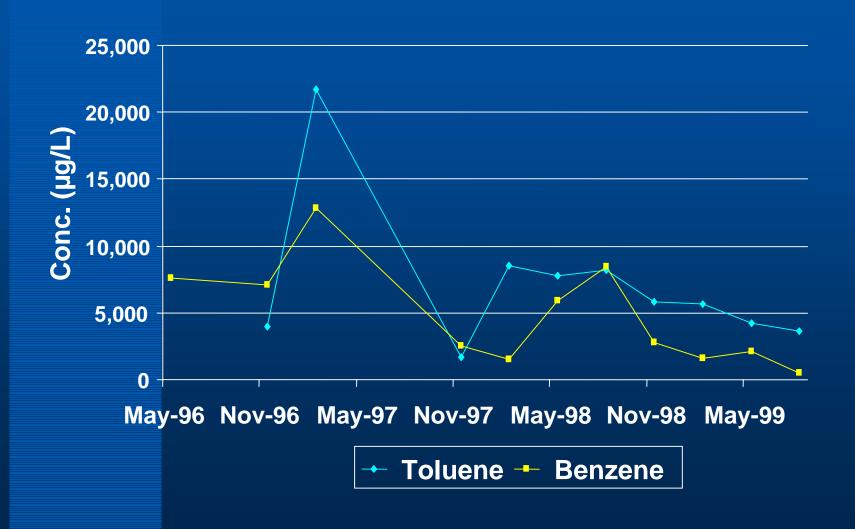
- 1. Reducing number of monitoring points
- 2. Reducing monitoring frequency
- 3. Simplifying list of monitoring parameters
- 4. Ensuring efficient field sampling procedures
- 5. Streamlining data evaluation and reporting
- 6. Performing annual evaluation


1. Reducing Number of Monitoring Points

- Largest impact for reducing costs
 - Labor
 - Lab analysis
 - Data management
 - Reporting
- Typically, more wells than necessary are monitored
- Need to comply with state requirements
- Need to monitor horizontal and vertical extent

1. Reducing Number of Monitoring Points (Cont.)

- Common monitoring wells:
 - Upgradient
 - Source area
 - In-plume
 - Crossgradient
 - Plume edge
 - Sentinel/point of compliance


Idealized Monitoring Well Network

1. Reducing Number of Monitoring Points (Cont.)

- Perform annual review to see if well is needed
- Evaluate decision criteria
- May need wells for water-level monitoring only
- For large sites or Basewide application, may use geostat to determine redundancy
- Construct time series plots for visualizing contaminant trends

Example Time Series Plot – Air Sparging/Soil Vapor Extraction (AS/SVE) Site

2. Reducing Monitoring Frequency

Considerations:

- Conduct quarterly monitoring for first year
- Evaluate site to reduce monitoring to semiannual or less
- Sample background and upgradient wells less frequently
- Use simple groundwater flow calculations to estimate contaminant migration rate
- Construct trend plots (time series)
 - If concentrations do not change rapidly, reduce frequency

2. Reducing Monitoring Frequency (Cont.)

- If simple trend analysis is not helpful, use statistical trend analysis (Mann-Kendall test) or regression analysis
- Evaluate decision criteria
- Frequency and duration of monitoring will depend upon ongoing remedial action

3. Simplifying List of Monitoring Parameters

- Initial rounds typically contain a large number of sampling parameters
- After year 1, reduce parameters to contaminants of concern (COCs)
 - Savings for data management, data validation, and reporting
- Elimination of metals as COCs
 - Compare to background levels
 - Use low flow sampling
- Reduce number of QA/QC samples

4. Ensuring Efficient Field Sampling Procedures

- Low flow sampling technique
 - Sample from discrete zone
 - Decreases investigation-derived waste (IDW)
 - Reduces turbidity Reduces total metal concentrations
 - May reduce labor
 - Evaluate applicability for each site
- Dedicated vs. non-dedicated pumps & sampling equipment need to evaluate

4. Ensuring Efficient Field Sampling Procedures (Cont.)

Diffusion samplers

- New technology developed over last few years
- Potential for reducing costs significantly
- Protocol being developed by DON/USAF/USGS/ITRC
- Used/tested at Navy sites
 - NSA Mid-South (RPM News, Summer 1999)
 - http://enviro.nfesc.navy.mil/ps/newsletters/rpm/1999su.pdf
- Measures volatile organic compounds (VOCs) only
- Regulatory acceptance?
- Sampling costs (NSA Mid-South): \$1 to \$7 per well using diffusion samplers; \$34 to \$118 per well using low flow purging technique

Commercially Available Diffusion Sampler Assembly

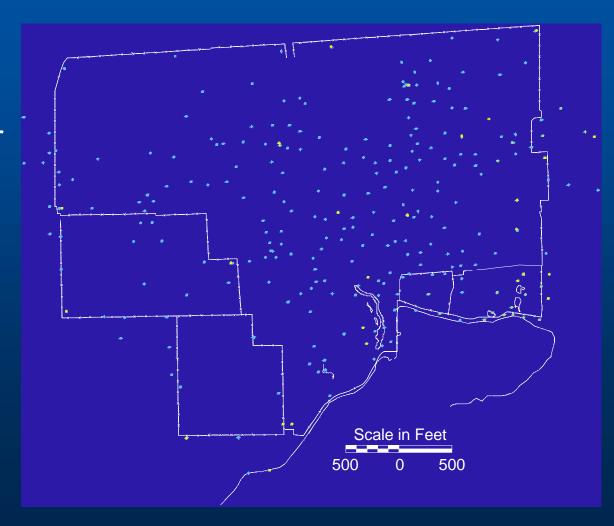
5. Streamlining Data Evaluation and Reporting

- Data Evaluation/Interpretation
 - Time series plots, box plots
 - Trend analysis, other statistical analysis
 - Cost and performance plots
 - Data tables
 - Geographic Information System (GIS) for spatial data display, plume maps
 - Custom databases

5. Streamlining Data Evaluation and Reporting (Cont.)

- Report streamlining
 - Quarterly/semiannual reports
 - Mostly data and results
 - Annual reports
 - Text, detailed data analysis, results, and recommendations

6. Performing Annual Evaluation


- Integral part of monitoring program
- Need to look at entire program, including data quality objectives (DQOs), decision criteria, and cleanup goals
- Annual report formalizes evaluation
 - Provides and tracks optimization recommendations
 - Provides information for five-year reviews

Case Studies

- Several case studies were performed
 - In-house
 - Contractor
- Lessons learned are used for guidance document
- Case studies are available on RAO/LTM Web site:
 - http://enviro.nfesc.navy.mil/ps/raoltm/index.html

Case Study: Naval Weapons Industrial Reserve Plant (NWIRP) Dallas, TX Monitoring Optimization

- NWIRP covers about 300 acres
- VOC plumes cover 80% of installation
- About 300 wells installed for characterization
- State requires aBasewide GWcompliance plan

Case Study: NWIRP Dallas, TX Monitoring Optimization – Iterative Process

- 1994 monitoring round ~ 140 wells
- 1997 monitoring round ~ 200 wells
- SOUTHDIV/NWIRP actions to optimize monitoring
 - Used geostat in 1997 to identify 52 redundant wells
 - Conducted background study for metals
 - Used low flow sampling
 - Eliminated metals in GW samples for many wells
 - Used custom database for data management

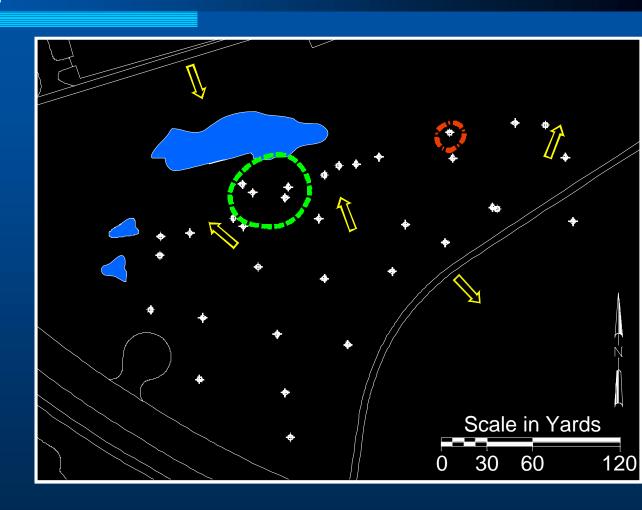
Case Study: NWIRP Dallas, TX Monitoring Optimization – Iterative Process (Cont.)

- Case study recommendations
 - Include 66 wells (may need additional wells for future RA)
 - Analyze for selected VOCs (11) instead of entire suite (41)
 - Conduct quarterly sampling for one year, then evaluate for semiannual/annual sampling
 - Conduct annual review to evaluate monitoring program against criteria

Case Study: Fuel Farm, NAS Patuxent River, MD

Case Study: Fuel Farm, NAS Patuxent River, MD

- 12-acre site
- 90 monitoring wells
- Petroleum spills and leaks and on-site tank bottomsdisposal
- Two plumes
 - Free-phase product
 - Benzene >100 ppb


Free-phase product plumeBenzene plume

Groundwater flow direction
Surface water

Case Study: Fuel Farm, NAS Patuxent River, MD Recommendations

- Include 34 monitoring wells
- Conduct quarterly sampling for one year, evaluate for semiannual/annual sampling
- Include BTEX analysis in addition to TPH
- Conduct annual review to evaluate program

Free-phase product plume

Benzene plume

Groundwater flow direction

Surface water

Case Study: NAS Brunswick, ME

Case Study: NAS Brunswick, ME Monitoring Optimization at Eastern Plume

- What prompted Navy to review monitoring program?
 - Data review and geostat showed redundant and predictable data
 - High cost
 - \$550K per year
- How were optimization decisions made?
 - Navy, U.S. Environmental Protection Agency (EPA), and Maine Department of Environmental Protection (MDEP) met for three days
 - Reviewed trends at each sampling location, using DQO

Case Study: NAS Brunswick, ME Monitoring Optimization at Eastern Plume (Cont.)

- What was achieved?
 - Monitoring frequency reduced from three to two times per year
 - Number of wells reduced from 36 to 22
 - Five new wells installed to fill data gaps
 - Reports streamlined
 - Monitoring reports contain mostly data
 - Annual report includes detailed discussion
 - Monitoring reports on CD-ROM reduced number of hard copies
 - Cost reduction ~ \$225,000

Overview

- Background
- Monitoring Optimization
 - Strategy
 - Case Studies
- RAO Optimization
 - Strategy
 - Case Studies
- Summary

RAO Optimization

- Evaluate progress toward cleanup goals
- Ensure remedy is:
 - Operating properly
 - Protective
 - Cost-effective
 - Capable of achieving cleanup goals
- Collect data/information for five-year reviews
- Achieve Response Complete timely and costeffectively

Remediation Technologies for Case Studies

- DON Working Group members identified sites for case studies
- Completed
 - Pump and Treat (P&T) Five systems
 - Chlorinated VOCs
 - Petroleum
 - Aboveground treatment: air stripping, granular activated carbon (GAC) and ultraviolet (UV)-chemical oxidation
- In progress
 - AS/SVE and bioslurping systems

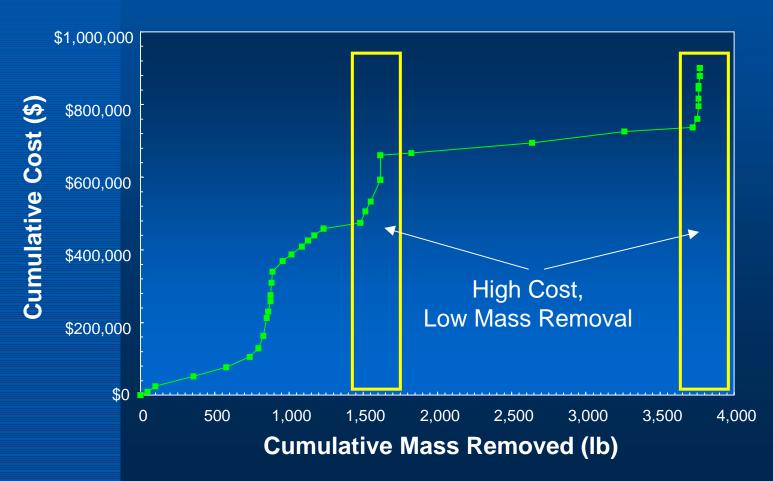
Remediation Technologies for Case Studies (Cont.)

- Completed
 - In-house
 - In situ chemical oxidation (SOUTHDIV presentation)
- In progress
 - In-house
 - Remote monitoring of multi-phase extraction system

RAO Optimization Strategy for Case Studies

- Review site background
 - Site description
 - Regulatory framework
 - Site conceptual model
- Evaluate System Performance
 - Cost and performance plots
 - Extraction and monitoring network
 - Aboveground treatment train

RAO Optimization Strategy for Case Studies (Cont.)


- Recommendations
 - Improving existing system
 - Extraction and monitoring network
 - Treatment system
 - Cleanup requirements
 - Additional or alternative remediation technologies

Performance Plot: Bioslurper Fuel Recovery

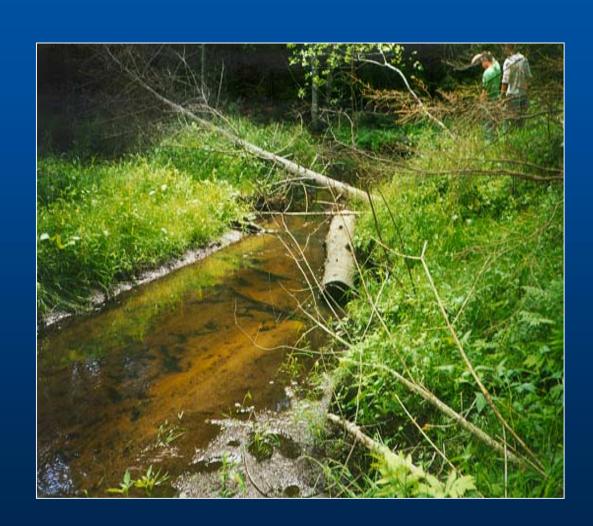
Cost & Performance: AS/SVE System

Cumulative Cost vs. Mass Removed

Case Study: NAS Brunswick, ME RAO Optimization at Eastern Plume

- Plume originated from three sites
 - Acid/caustic pit
 - Former FTA
 - Defense Revitilization Marketing Office (DRMO)
- Chlorinated VOCs
 - 1,1,1-TCA, TCE, PCE, 1,1-DCE, etc.
- Interim ROD 1992; Final ROD 1998
 - P&T system to contain, remove, and treat contaminants
 - Includes language for monitored natural attenuation (MNA) to achieve site cleanup
 - Cleanup levels: State of Maine guidelines TCA (200 ppb), TCE (5 ppb), PCE (5 ppb), 1,1-DCE (7 ppb)

Case Study: NAS Brunswick, ME RAO Optimization at Eastern Plume (Cont.)


- P&T system started in 1995
 - Five extraction wells for eastern plume
 - Two wells for landfill dewatering
 - Treatment system includes:
 - Metals precipitation (for landfill GW)
 - Clarification/filtration
 - UV-chemical oxidation for VOCs
- Landfill dewatering is complete
 - Extraction wells and leachate treatment system is now standby

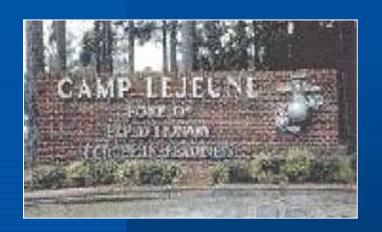
Case Study: NAS
Brunswick, ME
Eastern Plume: Total
VOCs in Deep
Groundwater

Case Study: NAS Brunswick, ME Mere Brook

- Located downgradient of eastern plume
- No VOC discharge to Mere Brook
 - Determined by MDEP/EPA study
- Water samples also show no VOCs

Case Study: NAS Brunswick, ME Groundwater Treatment

- UV-chemical oxidation reactor
- UV lamps inside tubes
- Hydrogen peroxide added to GW
- No off-gas treatment
- Limitedeffectiveness fortrichloroethane(TCA)


Ongoing Optimization Practices (NORTHDIV & NAS Brunswick)

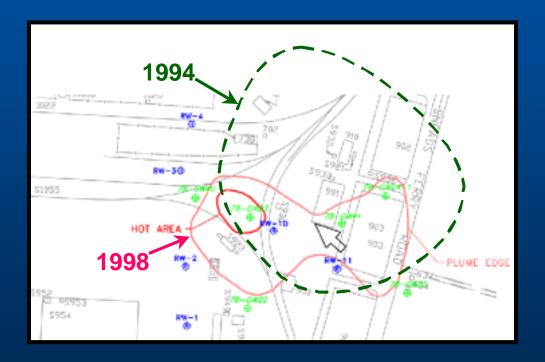
- Added a new extraction well
 - Short screen interval, deeper zone only
 - Improved contaminant mass removal
 - Improved well design and placement
- Completed evaluation of aboveground treatment system
 - Recommended replacing UV-chemical oxidation system with an air stripper
- Evaluated effluent discharge options to avoid sewer discharge fees

Case Study: NAS Brunswick, ME Recommendations

- Case study provided a "second look"
 - Agreed with ongoing optimization practices
- Recommendations
 - Start study for monitored natural attenuation (MNA) evaluation
 - Initiate negotiations with regulatory agencies for risk-based cleanup levels (RBCLs)
 - Implement minor changes in sampling and monitoring
 - Reduce treatment plant operation labor cost
 - Operate extraction wells at hot spots until asymptotic levels are reached

Case Study: MCB Camp Lejeune, NC

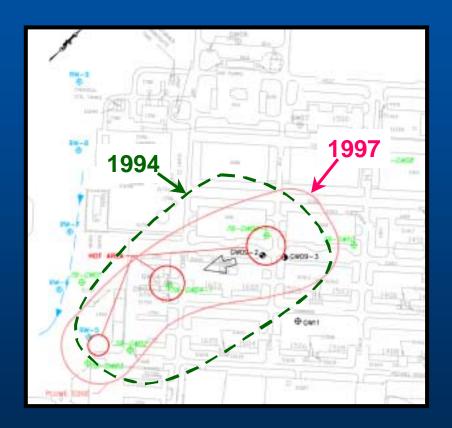
MCB Camp Lejeune


Case Study: MCB Camp Lejeune, NC Operable Unit (OU) 1

- Three sites, GW contamination from Site 78 (Hadnot Point Industrial Area [HPIA])
 - North and south plumes
 - VOCs in shallow aquifer: PCE, TCE, VC, 1,2-DCE, benzene, etc.
- ROD signed 1994
 - North and south P&Treat systems
 - Cleanup levels
 - Combination of maximum contaminant levels (MCLs), NC state regulations, and RBCLs
 - PCE (0.7 ppb), TCE (2.8 ppb), VC (0.015 ppb), 1,2-DCE (total) (70 ppb), benzene (1 ppb)

Case Study: MCB Camp Lejeune, NC OU 1 (Cont.)

- P&T systems started in 1995
 - Identical treatment trains
 - Pretreatment
 - Air stripping
 - GAC
 - Current extraction wells
 - Three north
 - Seven south
- Extraction well network upgraded in 1998
- Low-permeability aquifer impedes mass removal by GW extraction


Case Study: MCB Camp Lejeune, NC OU 1 North Plume: Total VOCs

Plume: 10 ppb

Hot Spot: 10,000 ppb

Case Study: MCB Camp Lejeune, NC OU 1 South Plume: Total VOCs

Plume: 10 ppb

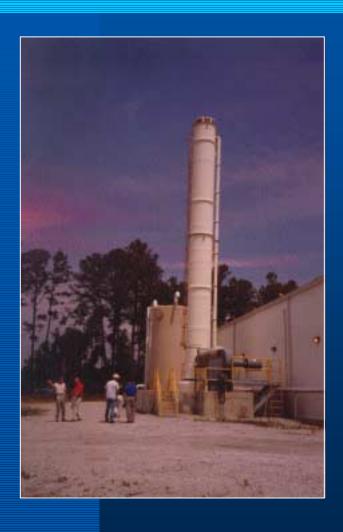
Hot Spot: 10,000 ppb

Case Study: MCB Camp Lejeune, NC OU 1: Recommendations

- Continue operating P&T systems until recovery rates reach asymptotic levels
- Conduct MNA evaluation study
 - Breakdown products are present
 - Plumes appear to be contained
 - No receptor impacted
 - May need additional monitoring wells

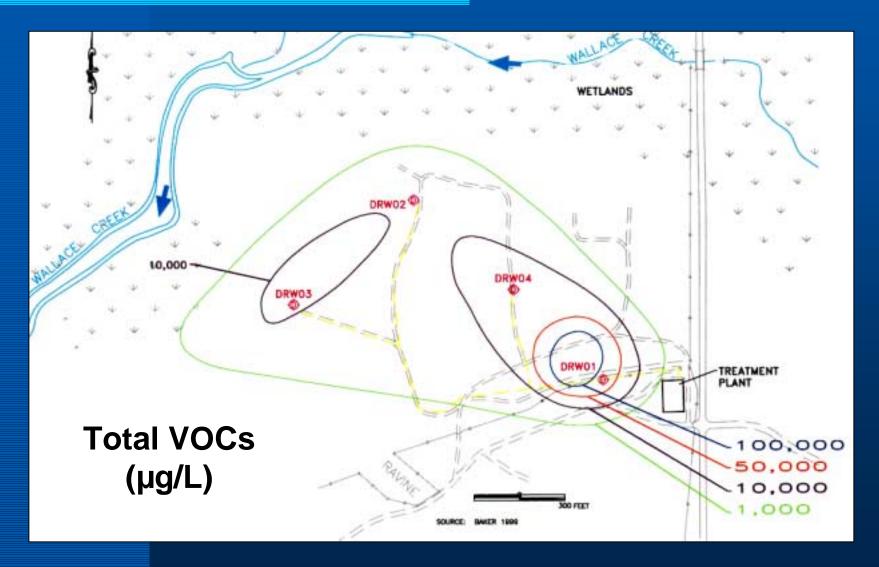
Case Study: MCB Camp Lejeune, NC OU 1: Recommendations (Cont.)

- Consider revising risk assessment assumptions to industrial land-use scenario
- Continue to monitor in accordance with GW monitoring plan
- Evaluate use of air stripper without GAC polishing, and GAC without air stripping
- Prepare time series plots for individual COCs

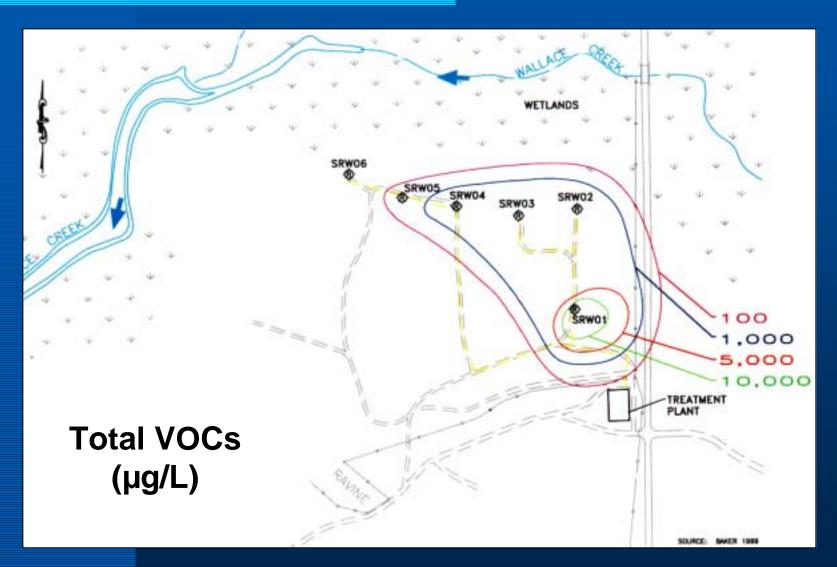

Case Study: MCB Camp Lejeune, NC OU 2

- Three sites, 210 acres
 - Current GW contamination mostly from Site 82 (storage lot)
- Chlorinated VOCs in shallow and deep aquifer
 - PCE, TCE, 1,2-DCE, VC, etc.
- Deep aquifer is drinking water source
- ROD signed 1993
 - Selected remedies: soil removal, SVE, and P&T
 - Cleanup levels
 - Combination of MCLs, NC state regulations, and RBCLs
 - PCE (0.7 ppb), TCE (2.8 ppb), 1,2 DCE (total) (70 ppb), VC (0.015 ppb)

Case Study: MCB Camp Lejeune, NC OU 2 (Cont.)


- P&T systems started in 1996
 - Large system ~300 gpm
 - Pretreatment, air stripping, GAC
 - Current extraction wells
 - Six shallow 35 ft, 4 to 8 gpm per well
 - Four deep 101 to 154 ft, 30 to 150 gpm per well
- System operates at high efficiency
- Removed 41,000 lb of contaminants between January 1997 and March 1999

Case Study: MCB Camp Lejeune, NC OU 2 (Cont.)



- Air stripping tower
 - 66 ft high
 - 5 ft diameter
 - 45 ft packing
 - ~ 300 gpm

Case Study: MCB Camp Lejeune, NC OU 2: Deep Plume

Case Study: MCB Camp Lejeune, NC OU 2: Shallow Plume

Case Study: MCB Camp Lejeune, NC OU 2: Recommendations

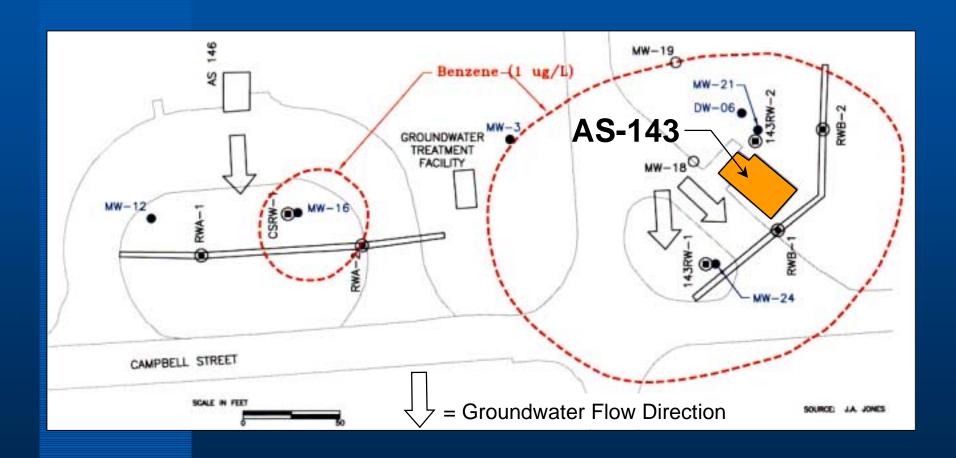
- Continue P&T and aggressive mass removal
- "Don't fix it if it ain't broke"
- Suggest the following when recovery rates decline:
 - Additional site characterization to delineate dense, nonaqueous-phase liquid (DNAPL) source area and dissolved plume
 - Evaluate role of MNA, particularly for shallow zone
 - Use diffusion samplers
 - Selected wells
 - Determine appropriate screen interval for future wells

Case Study: MCB Camp Lejeune, NC OU 2: Recommendations (Cont.)

scenario

 Consider revising risk assessment and cleanup levels for industrial land use as future exposure

- Sample individual wells quarterly for COCs
- Prepare time series plots and contours of individual COCs


Case Study: MCB Camp Lejeune, NC Campbell Street Fuel Farm

Case Study: MCB Camp Lejeune, NC Campbell Street Fuel Farm

- Three sites
 - Jet propellant 5 (JP-5) and gasoline contamination from tank and pipeline leaks
- Excavated contaminated soil
- Recovery trenches at all three sites, and three recovery wells in hot spots
- Small P&T system (package unit)

Case Study: MCB Camp Lejeune, NC Plumes at Campbell Street Fuel Farm

Case Study: MCB Camp Lejeune, NC Campbell Street Fuel Farm: Recommendations

- Evaluate MNA for site closure
 - Additional monitoring wells needed
 - Asymptotic conditions observed
 - Plumes appear to be contained
- Pumping from two sites may be stopped
- Continue with hot spot removal at AS-143
 - May use existing mobile Aggressive Fluid Vapor Recovery system from MCB instead of P&T system

Overview

- Background
- Monitoring Optimization
 - Strategy
 - Case Studies
- RAO Optimization
 - Strategy
 - Case Studies
- Summary

Summary

- RAO and monitoring costs will increase
- Conduct detailed annual evaluation to review progress and to identify optimization opportunities
- Include cost and performance plots, time series plots and other data visualization approaches
- Need exists to improve cost data collection for the annual report

Summary (Cont.)

- Interim Final Monitoring Guidance provides details of how to optimize monitoring
- RAO optimization should consider technology substitution (at technology limits)
- Optimization will reduce long-term costs and provide focus for site closeout
- RAO Optimization Guidance (September 2000)

Tools

- DON Working Group Web site http://enviro.nfesc.navy.mil/ps/raoltm/index.html
 - Contains:
 - Optimization Case Studies
 - Interim Final Guide to Optimal Groundwater Monitoring (January 2000)
 - Draft RAO Optimization Guidance (September 2000)
 - Web site links (USAF, Army, EPA, DOE)
- Environmental Site Closeout Process web site http://www.afbca.hq.af.mil/closeout/

Points of Contact

- Doug Zillmer (NFESC)
 - Phone: (805) 982-1556
 - e-mail: zillmerda@nfesc.navy.mil
 - -OR-
- Any DON Working Group member